
I \ 
I    AGRICULTURE HANDBOOK NO. 25 6 

|„[ B 5^ A R r 
RE.CÍ- 

I 1 BEFÄRTM..IV1  It ,„ ,ir 

lELTSVlLLE BRAI^r! 
■^■wjVMí^ -í '^-y-:^ 

IMS«« WS»»«««»» ««<&» 
■»■H ■■•«■«s«» » s«4» 
■■■•a« B*M«aB«Baff ««« 
■Mafli maaMB«»« ««• <& 
■•■■ai saaaaaaaaa 9«JCï^ ■■aaaa ■■•*«»««■• a «» » 
■■■«Bi uiaassBs»« ««M«« 
amaai nuintaairaa M«» >- 
iiaafli ■■Mnaaaat ««%!!' 
iniau BUM« Baaaa ttttm 
BBBBBBBWUiBBSBtlIIXIiW 
■BBaaiKBBBBiSMBBaBiË ^ 
■Haai uaasMBB« C«B '? 
■MB«! BBBIMMIBB* KB« 

IliBVS-»^    " I     A 

it ià'moiiug 
CERTAIN NONLINEAR FUNCTIONS 

aasL 
M|BS«BBBS««aS£ J£ 
MHBBBtBBBBBBB«« 

HHniBBBBBBBSB««??«' 

MSKBBBitS' 
"HKiBaaaiiiL-.. 
 B«BfiSWSS>^ 
■aBBBB«!««»«'^^ 

with emphasis on agricultural data 
I8SB' ■ " 

ItíNI íüí^í^í OF âeiiClIlîiJIf     IciBiwic listirc 

Washington, D. C. 



CONTENTS 

Pagei 

I. INTRODUCTION  1 

II. THE  PEARL-REED  (LOGISTIC)  FUNCTION  1 
Method 1:   A Transformation of the Dependent Variable  2 
Method 2:   A Difference Equation for the Dependent Variable  2 

III. THE  SPILLMAN  FUNCTION  3 
Method 1:   A Transformation of the Dependent Variable  3 
Method 2:   A Difference Equation for the Dependent Variable  3 

IV. THE GOMPERTZ  FUNCTION  4 
Method 1:   A Transformation of the Dependent Variable  4 
Method 2:   A Difference Equation for the Dependent Variable  4 

V. THE  FUNCTIONS AS EXPLICIT SOLUTIONS OF DIFFERENCE 
EQUATIONS  5 
The Spillman  5 
The Gompertz  5 
The Logistic  5 

VI. EXAMPLES  FOR  THE  SPILLMAN AND  GOMPERTZ  FUNCTIONS  5 

VII. THE  RELATIVE   MERITS  OF  LINEAR  TRANSFORMATION VS. 
ITERATIVE   METHODS  12 

LITERATURE  CITED  14 

APPENDIX  15 

August 1963 

For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington, D.C.   20402 

ii 



Errata Sheet 

Agriculture Handbook No. 256:  Simple Methods of Estimating Certaf^^, 
Nonlinear Functions with Emphasis on Agricultural Data 

Page 2,  Equation (2) 

Page 2,  Equation (4) 

Substitute a  for a 

Substitute y... for y.+l 
•^ 1+1    ^ 1 

Page 4, first paragraph of Part IV, The Gompertz Function; third 
sentence should read: 

"As yield response to nitrogen at low levels of nutrient 
application frequently manifest this phenomenon, the 
Gompertz curve is particularly useful.  It also may be 
applicable for estimating trends in technological diffusion, 
a process that typically exhibits an increasing rate in its 
early stages and a declining rate in its latter stages (4)." 



V 
SIMPLE METHODS OF ESTIMATING CERTAIN NONLINEAR 

FUNCTIONS WITH EMPHASIS ON  AGRICULTURAL  DATA 

By 

Richard H. Day,  Agricultural Economist 
Farm Production Economics Division, 

Economic Research Service^' 

I.    INTRODUCTION 

This paper presents two elementary methods for fitting three different nonlinear 
functions to empirical data by means of simple linear regression*    Iterative least 
squares methods which have been developed for estimating parameters of nonlinear 
functions (-^y^^i^ sonaetimes lead to certain difficulties in application.    Because this 
is the case the much simpler methods developed in this handbook are useful tools for 
application. ^The  relative merits of this  approach versus the nonlinear iterative 
approach ar« briefly described^in-the concluding-section. 

The Spillman,   Gompertz,   and Pearl-Reed  (logistic)  functions a^^ considered. 
The two methods presented for the Pearl-Reed function are already well known and are 
given first.   Tttèn analogous methods -a^f^ derived for the Spillman and the closely 
related Gompertz curves; these apparently have not been presented in the literature.] ^.^. / 

U.    THE  PEARL-REED (LOGISTIC)  FUNCTION 

The logistic curve has been applied by Griliches (4) to the estimation of the 
rate of adoption of hybrid seed corn, and the author of this handbook has found suitable 
use for it  as  a production  function.1^   The logistic,   like the Gompertz,   is an 
S-shaped or sigmoid curve,   and is therefore particularly applicable to the estimation 
of single input production functions manifesting increasing returns to scale,   and to 
trends in technological diffusion (4, 2^).    The equation for this function is 

(1) y= ^    ,.. ß,  y>o,  o<a<l 
1 +   ße 

ax 

in which y is the  "dependent"   and x the  "independent"  variable.    The parameter 7 
is the maximum value for y,   and it is approached assymptotically as x increases; 
a determines the rate at which y increases with x,   and ß determines the value of y 
when X is zero. 

1/ A part of the research on which this report is based was financed by the National 

Cotton Council. ^.^   -, .^ 
2/ Underscored figures in parentheses refer to Literature Cited, p    14 
3/ Day   R.  H.    Recursive Programing and Production Response. North-Holland 

Pub. Co '   Amsterdam,  Contributions to Economic Analysis,   1963. 



Method 1:    A Transformation of the Dependent Variable 

Equation (1) may be placed in the form 

(2) Z - looO'/y -  1) = logß- ix 

If the  data  are  suitable a graphical estimate  of T may be  obtained, 7.    Letting 
Z^ = log {y I y^-l),   i = l,...,h,  where  h is the number of observations,   the 
regression equation (3) may be fitted by classical least  squares. 

(3) Z = A + Bx 

Estimates of oe and ß can now be obtained from the expressions,  a = -B, p  = e^ = 
antilog A.    A similar transformation due to Berkson il) was used by Griliches. 

Note that at and ß are not least squares estimates of a and /?,    Instead,   they 
are derived from the least squares parameters A and B. 

Method 2:   A Difference Equation for the Dependent Variable 

Suppose data are selected in such a way that x^ - mi, i = j, . . ., j+h-1. That is, 
there are h observations available at even intervals of width m for the independent 
variable.    Then equation (1) may be written as 

y 
(4) y.- 

and y 

^; .   ' ''   ^^ "      ^   ,   n  -oem(i+l) 
i' r I 1 + pe 

By combining these two expressions the following is obtained, 

(5) 1        _± d-e-""')  +  e-«"'  _!_ 

Let Z- = l/y^  i=j, . . ., j+h-1.    Then the difference equation 

(6) Z^^^  = A + BZ- 

maybe fitted by least squares. From equation (5) it is seen that A = (l-e"""^) /?'  and 
B = e~^^.    Therefore the estimates of a and y are Û = -(log B) /m and 9= (l-B) /A 

This procedure is due to Rhodes (_1_3) who also suggests a method for estimatinj 
ß.    He utilizes the transformation (2) as follows: 

Í7) log ß. = (^ /y.-l) +âmi,       i=j, ...,j+h-l. 

He then takes the mean of the right hand side of this expression as the estimate of 
log ß.    Thus, 

(8) ß = antilog   [I(^/y.-l) /h + am(h-l)/2].. 



Freauenttv    T       It .^     ^''^"^^'^^ ^^^^^ '^ extremely poor fits for some data. 
Frequently,   a much bet er estimator of ß is simply the value which will force the 
curve through the first (or last or any other) data point (y.,  x-).   Thus 

A 3      3 
A ^- <8> è=e«^n^/y,-l] 

A    ,A 
1 

IfXj=mj=o, then      p={9/y-l). 

A discussion of various methods for estimating tne parameters of the logistic 
may be found m Nair (11), s       ^ 

III.    THE  SPILLMAN  FUNCTION 

The SpiUman curve has been used by Spillman (M) and Ibach (7) for estimating 
the yield response of field crops to nitrogen.    The latter has developed an ingenious 
method for graphical estimation of its parameters (6) .    Paschal  and French (12) have 
presented an iterative least squares method due to Stevens (^5) for fitting the ftTnction. 

The Spillman curve is expressed algebraically as 

^9) y = y -ßa^ 0< a <  í; y, ß>o. 

The parameters a, ß,   and >'have the same general interpretation as the correspond- 
mg parameters for the Pearl-Reed curve.    Two methods,   analogous to those pre- 
sented for the logistic,   are now derived for estimating these parameters. 

Method 1:   A Transformation of tne Dependent Variable 

From equation (9) we obtain 

(10) Z = log ( 7-y) = log/8+(loga) x. 

If data are distributed fortunately a good graphical estimate of y may be obtained, 
say y .   Now let (y-,  x-),  i = 1, .... h be a set of h observations of the variables y 
and x.   Let Z¿ = log (^-y-),  i = 1, . . ., h.    The linear equation 

(11) Z = A+ Bx 

may now be fitted to the points (Z¿,  X^) i = 1, , . ., h,   giving least squares estimates 
of A and B.    From equation (10) it is seen that Ù = e^ = antilog B  and ^ e^ = 
antilog A, 

Method 2:   A Difference Equation for the Dependent Variable 

Let us suppose that tne observations (y^,  x^) are available in such a way that 
Xi = mi,  i = j, . , ., j + h-1.   That is, the variable x is spaced at even intervals of 
width m.    Then equation (9) may be written 

(12) y. =  y-ßa^\  i =j, ...,j+h-l, 

and also                                 y.^^ =   y -/JcT^^^^^'  i - j, . . ., j+h-1. 

By a suitable combination of these two equations the following expression is obtained. 

(13) y.^.  = (1 - a"") r+ a"' V.,.  i ^ .1 Hh, 

3 



The linear equation 

(14) Yi+l = A + By. 

may now be derived from tne resulting least squares estimates  A and B.    Thus 
0= B-^and^ = A/(l-B). 

In a manner analogous to Rhodes' method for estimating ß for the logistic the 
following estimator of ß for the Spillman can be obtained. 

(15) ^= antilog Cr(^- yj) /h - m log ¿^(h-l)/2]. 

Or by forcing the curve through (y.,  Xj) the first data point,  one obtains 

(15») ^ = (^-y.) ce-^j 

or ^ = ^-y^if x^ =o. 

IV.   THE  GOMPERTZ  FUNCTION 

The Gompertz function was   found by French (_3) to be superior to a great variety 
of alternative production function forms for the analysis of yield response of corn to 
nitrogen for a series of Nebraska experiments.    The Gompertz is an S-shaped or 
sigmoid curve,  that is,  when used as a production function it may show increasing 
returns to scale.    As yield response to nitrogen at low levels of^nutrient^ap^ 
frequently manifest this phenomenon, the Gompertz curve also ouggcatc thatlt^may be 
applicable fe^estimating trends in technological diffusion,   a process that typically ex- 
hibits a^ increasing rate in its early stages anda declining rate in its latter stages (4). 

The Gompertz function is closely related to the Spillman function as can be 
observed in its algebraic expression. 

Thus y' = log y will have the Spillman form if y has the Gompertz form.    For this 
reason the results derived for the forrtier function are directly applicable here. 

Method 1:   A Transformation of the Dependent Variable 

By letting y^ = log y. equation (10) can be obtained from (9).    Then Z^  = log 
{^ -yt.) = log (^ - log y.) = log B + (logoe)x.    The least squares estimates of A and B 
are obtained from (11).    Then the estimates a = e^ and^ = e"^ are derived just as 
before.    As in the Spillman case an exogenous estimate of Y must be made, probably 
by a graphical analysis.    The only difference is therefore the conversion of the 
observations of the dependent variable y to logarithnas in the case of the Gompertz 
curve. 

Method 2:   A Difference Equation for the Dependent Variable 

Converting y to logarithms also enables the direct application of method 2 for 
the Spillman to be used for estimating the parameters of the Gompertz.    Thus, if 
y*- = log y.,  i = j, .. ., j+h-1 equation (13) may be derived from (16).   By fitting (14) 
the estimates of a and y are obtained from the least squares parameters  A and B. 
Thus¿^= B"^ and ^ = A/(l-B).    To estimate ß ,  (15) or (150 maybe used. 



V.   THE  FUNCTIONS AS EXPLICIT SOLUTIONS  OF DIFFERENCE EQUATIONS 

We may note that in the search for a linearizing transformation of the nonlinear 
functions explicit solutions to several difference equations have been found.    These 
follow from the "even interval data" methods. 

The Spillman 

The linear,  nonhomogeneous difference equation y._^.  = a + b y, has as its 
explicit solution the Spillman function in the form 

(5.1) y =^^ß(bt) 

in which ß'is a constant determined by initial conditions on y. 

The Gompertz 

The nonlinear difference equation exp(y^^^) = exp(a+by.) has as its explicit 
solution the Gompertz function in the form 

(5.2) y = exp[y§^ ^ß b^] 

in which ß is determined by initial conditions on y,   and in which exp(y) = e^. 

The Logistic 

The nonlinear difference equation y^_^^^ = a + by^^ has as its explicit solution the 
logistic function in the form 

(5.3) y "-"' 

in which^ is determined by initial conditions. 

VL   EXAMPLES FOR  THE  SPILLMAN AND GOMPERTZ  FUNCTIONS 

The data presented in tables 1 and 2 are used here to illustrate the methods 
derived above for fitting the Spillman and Gompertz functions.    The literature al- 
ready cited contains examples of the methods described in section II for the Pearl- 
Reed function.    First,  three examples are given using the simple production 
function or relation of one output (oat yield) to one input (nitrogen).    Second,  two 
examples are given in which the trend of an aggregate index of mechanical power and 
machinery is estimated. 

The examples demonstrate the utility of these simple methods,  but suggest 
caution in their application.    For some types of data,  extremely close fits will be 
obtained; for others, poor results will follow.    A graphical presentation of the results 
will indicate the success or failure of the method.    For this reason graphs of both 
the derived nonlinear curve and the regression on the transformed variables are 
presented for each example.    (Fig.  1 to fig.   10,  inclusive. ) 



Table 1.-Average yields for oats-nitrogen response experiments,  Mississippi 
Delta,   1951-1957 

Low rate experiments 
Nitrogen Average yield 

Pounds 

0. 0 
7. 5 

15. 0 
22. 5 
30. 0 
37. 5 
45. 0 

Bushels 

13.6 
23.4 
34.7 
36.8 
43.5 
49.5 
54.8 

:        High rate exp eriments 
:     Nitrogen : Average yield 

:      Pounds Bushels 

:         0 15.4 
:        45 54.4 
:        60 60.3 
:        75 66.5 
:        90 68.0 
:        105 66.6 
:        120 67.5 

Source:   Perrin H.  Grissom (_5). 

Table 2. -Index of mechanical power and machinery inputs,   1933-1958 

(1947-49 = 100) 
Year Index   : :   Year Index   : :   Year Index 

.. — —          • :   1941 61    : :    1951 127 
-- : :   1942 66    : :    1952 133 

1933 44    : :   1943 69    : :    1953 134 
1934 44    : :    1944 70    : :    1954 135 
1935 45    : :   1945 74    : :    1955 136 
1936 48    : :    1946 80    : :    1956 137 
1937 52    : :    1947 89 :    1957 138 
1938 55    : :    1948 100    : 1958 137 
1939 55    : :    1949 111    : : -- 

1940 58    : :    1950 118    : : -- 

Source:   Ralph A. Loomis and Glen T.  Barton (9, table 13). 

In the discussion of sections II,  III, and IV,  natural logarithms or logs to the 
base "e" were used.    However, Naperian logarithms,  logs to the base 10,  will serve 
just as well.    The latter were in fact used for all computations contained in this 
section. 

Example 1:   The high rate data from table 1 are used to illustrate method 1 for 
the Spillman function.    The estimated curve and the original data are presented in 
figure 1.    These data indicate a strong nonlinear relationship,   and a good " eyeball " 
estimate of the upper asymptote,   y ,   apparently can be made,    y was estimated by 
eye to be 68. 1.    Figure 2 shows the simple regression of the transformed yield 
variable Zj = log (68. 1 - y.) on nitrogen level.    The transformation is strongly linear 
except for the z value at 90 pounds of nitrogen.    This "flyer" is due to the fact that 
the logs of values between zero and 1 are negative,   and decrease very rapidly to 
-coas z gets close to zero.    As,   z^ = 68.1 - 68 = 0.1,   this strong negativity results. 



Spillman Funcfîon, Estimation Method 1 

YIELD RESPONSE OF OATS TO NITROGEN 
High  Rate  Experiments, See Appendix Sheet 4 
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SpiWrnon Function, Estimation Method 1 

SIMPLE REGRESSION 
High  Rate  Experiments,  See  Appendix Sheet 3 
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Such a flyer demonstrates the extreme care one should take in applying this particular 
transformation.    In this example and those to follow all such flyers were omitted in 
the computation of the regression coefficients A and B. 

Example 2:   Figure 3 shows the result of applying method 2 for the Spillman 
function   for the low rate data of table  1.    Unlike the high rate data,  these 7 obser- 
vations are distributed at even nitrogen intervals of 7. 5 pounds and method 2 is 
applicable.    Figure 4 shows the simple regression of yield on "lagged" yield 
Yi+l ^ ^^^ y*-    ^^^^ relation is also strongly linear.    The flyer problem is not 
present for these data and all seven observations were used.    The strong linear re- 
lationship shown in figure 4 is equivalent to serial correlation in a time series 
variable.    The serial correlation of yields spaced at equal nitrogen levels is due to a 
causal relation between yield levels and nitrogen applications.    It is exploited here to 
estimate the causal or structural relation represented by the nonlinear Spillman 
function. 

Method 2 yields estimates of y and a ,    The ß coefficient was estimated by using 
equation 15' with j = 0, that is, ^ = ^ - y^ 

Example 3:   To illustrate the use of the Gompertz function using method 1,  the 
low and high rate experiments of table 1   were combined.    The data and the estima- 
ted Gompertz production function are shown as figure 5.    Substituting 10 for e in the 
various Gompertz equation logarithms to the base 10 were used.    Thus the upper 
asymptote was estimated as 68 = 10^ so that Twas chosen as 1.83251.    Figure 6 
illustrates the simple regression of the transformed variables, 
z^ = log (y - log y^) = A + Bxn where x^ was the nitrogen level,    A close linear rela- 
tion is evident in this transformation but the use of logs,   as in example 1,  introduces 
a flyer in the transformed data.    At 90 pounds of nitrogen the experimental yield is 
68.0,   the  same   as the eyeball estimate of lOT.    Consequently,  the antilogarithm 
is -CO.    This data point was omitted. The  occurrence of this flyer suggests,   as in 
example 1, that the transformation for method 1    is linearizing for a considerable 
range of the data,  but not for points close to the maximum attainable value.    A 
superior estimate might be obtained by choosing only data points in the 0-60 pound 
nitrogen level range.    Examination of the graph of the transformed variable is again 
seen to be an important precautionary supplement to a straightforward application of 
method 1. 

Example 4:   The data from table 2 were used to illustrate method 2 for the 
Gompertz function.    Figure 8 indicates a strong linear serial correlation of the 
Zj = log y^ variables,  that is,  the logs of the aggregate power and machinery index. 
However,  the derived nonlinear relationship shown in figure 7 is extremely poor. 
While this might not have been guessed fronci a graphical analysis of the transformed 
data (fig.  8),  the reason manifests itself in the original data.    The latter do form a 
sigmoid or S-shaped curve,   and the Gonnpertz is itself a function of this kind. 
However,  the Gompertz best represents data which increase rapidly at first and then 
taper off into a long and more gradual approach to the upper asymptote.    Yield re- 
sponse data typically follow such a pattern.    The index considered,  however,  has an 
opposite pattern,  that is,   a gradual increase climaxed by an abrupt approach to an 
asymptote. 
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YIELD RESPONSE OF OATS TO NITROGEN 
High   and Low Rate  Experiments  Combined, See Appendix  Sheet 8 

6U. OATS 1       .      1 I 

60 

50 

40 

30 

20 

lO' 
( 

U. S,  DE 

- —'• 

/•^ 

/ 

/ 

/. 

/ 
/ 
/ 

D         20       40        60       80      100      120      140      160 
LB. NITROGEN 

PARTMENT  OF   AGRICULTURE                                                                        NEC.   ERS   1691-63(1)       ECONOMIC   RESEARCH   SERVICE 

Figure 5 

Gompertz Function, Esfîmatîon Method I 
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Gomperfz Function, Estimation Method 2 
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Gompertz Function, Estimation Method 2 
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The logistic  curve,  which is asymmetric  sigmoid  function,  would better 
represent the data,  but even it would not be adequate to describe the asymmetry of 
this particular example.    Again we are reminded to supplement the application of 
the techniques of this paper by graphical analysis of the data. 

Example 5:   The Spillman function is not sigmoid but could be used to represent 
the upper portion of an S-shaped curve.    As the Gompertz and Logistic curves are 
not suited for representing the index of power and machinery over the period 1933- 
1958,  the Spillman could be used to represent the upper portion of the trends. 
Figure 9 shows the result using method 2.    As in example 1,  the strong serial cor- 
relation of the variable enables the parameters of the Spillman to be estimated with 
some accuracy.    Then a close fit to the index for the sub-period is obtained. 

VIL    THE  RELATIVE  MERITS  OF  LINEAR  TRANSFORMATION 
VS.  ITERATIVE METHODS 

The fitting of nonlinear functions to empirical data has been greatly facilitated 
in recent years by the advent of  computer programs ^1 for iterative least squares 
estimation techniques {2, ^).    These techniques generally begin with an initial guess 
for the parameters of the particular nonlinear function to be fitted.    They then 
choose increments by which to modify the initial guess in such a way as to diminish 
the sums of squares of deviations of the data from the function fitted.    One such 
modification is called an iteration.    For well behaved functions and well behaved 
data a series of such iterations will converge to the least squares estimates. 

Such techniques,  however,  have been found through extensive practical use to 
have four disadvantages. 

(1) Certain types of data lead to convergence difficulties.    Briefly, it has been 
found that if data are not sufficient to approximate an extensive portion of the func- 
tion,  numerous local optima in a least squares sense may be found by beginning with 
various initial guesses for the parameters.^'    One is thus faced with the problem of 
finding all such least squares estimates and picking the best one. 

(2) The computer programs involved usually require a specially programed 
subroutine for the particular function being used.   Not all research workers who 
desire to use nonlinear functions will be interested in,  or have the time to program 
such subroutines. 

(3) The iterative procedures may consume a substantial amount of computer 
time relative to the linear transformation method. 

4/ The following references describe several such programs:   Booth,  G. W., 
and Peterson,  T. I.   Non-linear Estimation (Princeton - IBM),   in^ Mathematics 
and Applications Department,  Internatl. Bus. Mach.  Corp.,   Forecasting by Gener- 
alized Regression Methods (WL NLI),  White Plains,  N.  Y.,   Feb.   1959;  Gardner, 
R. S.    A Least Squares Iteration.    U. S. Naval Ord.  Test Sta.,  IBM SHARE Distrib. 
No.  934,  Prog. No.  145-20,   China Lake,   Calif.,  June 1960; and Wood,  P. B.   Non- 
linear Least Squares - (OR NLLS).    IBM Appl.  Sei.  Spec. Prog. Group,  SHARE 
Distrib. No.  837,  Union Carbide Nuclear Co.,  Oak Ridge,  Tenn. 

_5/ See Gardner,  footnote 4, A Least Squares Iteration. 
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Spillman function. Estimation Method 7 
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(4)   Finally,  iterative techniques are not well adapted for use on desk 
calculators,   a disadvantage that may be serious to research workers who do not 
have an adequate scientific computer at their disposal. 

The chief advantage of iterative techniques is their convergence if the data are 
suitable to least squares parameter estimates when the error or shock term is 
additive. 

The disadvantages of transformation methods are (1)   that they do not give 
least squares estimates for additive error terms,   and (2)   that some of the para- 
meters may have to be exogenously estimated either "by eye" or some other means, 
perhaps one statistically arbitrary.    But their ease of application,  particularly to 
data which fall short of the range of values needed to approximate a sufficient range 
of the function,  may frequently justify their use.    Finally,  one may observe that the 
methods presented in this handbook may be used to find initial parameter values 
which may then be improved by the iterative methods to which we have referred. 
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APPENDIX 

The computations involved in the methods described in this paper require only 
a desk calculator and a table of natural or common logarithms.    Computation forms 
were prepared to facilitate the various steps in estimating the coefficients.    These 
forms are shown in this appendix.    Forms for fitting the logistic function are in- 
cluded,  though empirical examples were not prepared.   The data and all computations 
are then provided on forms appropriate for each example presented in section VI. 

Flyers described in the text,  which were omitted in the computation of the 
parameters are indicated by asterisks. 
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COMPUTATION SHEET 
for 

Estimation of Logistic Parameters 
(Method 1) 

Sheet la 

Description of Data:  Sample computation sheet for       ^ 
fitting the Pearl-Reed or logistic y  _ 
curve by means of Method 1. 

(1) (2) (3) (^) (5) (6) 

variable 

Y. 
J 

variable 

A 
y (3) - 1.0 Log (Col. 4) (5) X (1) 

ÏJ      (2) 

XZj = XXj. XXjZj 

rxj2 (XXj)' XXj  £2j 

B = 

XX,Z. - n XX. XZ. 
J J       J   J 

XX.^ - i (XX.)2 
J   n    J 

A = i [X Z. - BXX.1 n    J     J J 
A 
oe -B = 

A 

ß -  Antilog A 
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COMPUTATION SHEET 
for 

Estimation of Logistic Parameters 
(Method 2) 

Sheet lb 

Description of Data-  ^^P^^ computation sheet for fitting Pearl-Reed or lo- 
^ *  gistic curve by means of Method 2. 

(1) (2) (3) (4) C =                      (scale factor)^ 

^J 
Zj =  Q^ 2i+ 1 V ^ 

Col.  2 «Col.  3 
2j  •  2j>i 

n-1 
V   7   - 

j=l J 

n-1 
r (z  ) -                - -- 

j=i  J 

^f^   D /       >,    r7       \ ¿1 

S-^l^J^     " 

n-1 
^2iZ._^l _ 

j=l ^  ^ 

n-1    n-1 
r z - r ^ -u-n J        J+1 - 

B = 

n-1 ] n-1   n-1 
ü Z. Xz. 

n-1 , 
rz' n-1  2 

(A) Sf,V^ 

A = 
n-1       n-1 

A_  -log B - 
a -   M '^    A 

^Scale factor introduced for computational convenience. Note appearance of 
"c" in equation for the constant, A. 
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Sheet 2 

TABLE FOR COMPUTING VALUES OF LOGISTIC FUNCTION 

Description of Data: sample computation 
sheet for computing values of logistic 
curve. Parameters from sheets la and lb. 

ß 
y 

(1) (2) (3) (^) (5) (6) 

X 
variable 

a  . X Antilog 
Col. (2) 

ß  °Col. 3 1.0 - Col. 4 r-^-Col. 5 

18 



Sheet 3 

COMPUTATION SHEET 
for 

Estimating Spillman Parameters 
(Method 1) 

Description of Data:  Computations for Example 1, Figure 
taken from Table 1, high rates. 

^■- 

Columns   2  and 3 
68.1 

(1) (2) (3) (4) (5) (6) 

observation 
number  j variable variable y - Col.  3 Log  Col.  4 Col.  5 X 

Col.   2 

1 0 15.4 52.7 1.72181 0 

2 45 54.4 13.7 1.13672 51.2 

3 60 60.3 7.8 .89209 53.5 

4 75 66.5 1.6 .20412 15.3 

*5 90 68.0 .1 -2.303 -207.3 

6 105 66.6 1.5 .17609 18.5 

■k-l 120 67.5 .6 -.511 -61.3 

E Zj   =    4.13083 

ZXj2    =       22,275.0 

E Xj   = 285.0 

(SXj)2    = 81,225.00 E X j E Z . 

138.5 

1177.28655 

B = -.0161 

EX.2 .    i     (EXi)2 
J n              -^ 

A = -     [E Zi - B  E X.   ]  =       1.7438 
n J J   

0^ = Antilog  B  = .9840 'ß= Antilog A 55.44 

*Flyers  as  described  in  text  omitted  from computations 
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Sheet 4 
TABLE FOR COMPUTING VALUES OF SPILLMAN FUNCTION 

Description of Data: a =  .9840 

Computation for Exajnple 1 Figure 1. 
Parameters from Sheet 3. 

ß 
y 

-  55.44 

68.1 

Log a = -.0161 

(1) (2) (3) (4) (5) 

X 
variable 

Log a ' Col. 1 Antilog Col. 2 ß   '  Col. 3 r - Col. 4 

0 0 1.0000 55.4400 12.7 

7.5 -.1208 .7572 41.9792 26.1 

15.0 -.2415 .5634 31.2349 36.9 

22.5 -.3622 .4274 23.6951 44.4 

30.0 -.4830 .3241 17.9631 50.1 

37.5 -.6038 .2458 13.6272 54.5 

45.0 -.7245 .1864 10.3340 57.8 

60.0 -.9660 .1073 5.9487 62.2 

75.0 -1.2075 .0617 3.4206 64.7 

90.0 -1.4490 .0355 1.9681 66.1 

105.0 -1.6905 .0200 1.1088 67.0 

120.0 -1.9320 .0117 .6486 67.4 

150.0 -2.4150 .0038 .2107 67.9 
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Sheet 5 

COMPUTATION  SHEET 
for 

Estimating  Spillman Function 
(Method  2) 

Description of Data-     Computations  for Example  2,  Figure 4.     Columns   1 and 2 
^ "       '     from Table   1,   low rates.     (M=7.5) 

(1) 

varlab le 

B = 

A = 

A 

13.6 

23.4 

34.7 

36.8 

43.5 

49.5 

(2) 

Yj  + 1 
var iable 

23.4 

34.7 

36.8 

43.5 

49.5 

54.8 

(3) 

Col.   1 X Col.   2 

318.24 

811.98 

1276.96 

1600.80 

2153.25 

2712.60 

n-1 n-1    n-1 
2 Yj  Yj+i   . _i_ E Yj   E Yj+i 

j=l (n-1)       j=l    J=l 

n-1 
(EY.)2 

n-1 

j=l   J (n-1)        j=i J 

n-1 n-1 
^-i-—    [  Z Yj+i     - B  E Yj   ]  =     12.4358 
(n-1) j=i  J j=i 

E Yj   = 201.5 

E Yj^ = 7633.35 

n-1 
E 

j=l 

n-l 
E 

j=l 

n-1 
(E Y.)2  = 40.602.25 
j=l 

n-1 
E Y.  Y.+l  = 8873.83 

j = l -■ 

n-1 n-1 
E Yj E Yj+i = 48.904.05 

j=l j=l 

n-1 
E Yj+i  = 242.7 

j=l 

.8342 

¿i=    Antilog     (  log B  )     =     .9761 
M 

^ = A/(l-B)     =  75.0048 
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Sheet 6 

TABLE FOR COMPUTING VALUES OF SPILLMAN FUNCTION 

Description of Data: 

2 Figure 3. 

a 

ß ■ 
y     : 

Log    Ci   : 

=    .9761 

Computations for Example 
Parameters from sheet 5. 

61.4 

75.0 

=   -.0242 

(.1) (2) (3) (4) (5) 

X 
variable 

LogOt • Col.   1 Antilog Col.  2 ß •Col.  3 r-coi. 4 

0 0 1.0000 61.4000 13.6 

7.5 -.1815 .8340 51.2076 23.8 

15.0 -.3630 .6956 42.7098 32.3 

22.5 -.5445 .5801 35.6181 39.4 

30.0 -.7260 .4838 29.7053 45.3 

37.5 -.8954 .4084 25.0758 49.9 

^5.0 -1.0890 .3366 20.6672 54.3 

60.0 -1.4520 .2341 14.3737 60.6 

75.0 -1.8150 .1628 9.9959 65.0 

90.0 -2.1780 .1133 6.9566 68.0 

105.0 -2.5410 .0788 4.8383 70.2 

120.0 -2.9040 .0548 3.3647 71.6 

150.0 -3.6300 .0265 1.6271 73.4 
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Sheet 7 

COMPUTATION SHEET 
for 

Estimating Gompertz Function 
(Method 1) 

_   . ^.            Computations for Example 
Description of Data: 

taken from Table 1. 

3, Figure 6 

7 =1.83251 

. Column 2 

= Log 68.0 

(1) (2) (3) (4) (5) (6) (7) 

J = variable variable Log Col. 3 Y-  Col. 4 
Log Col. 5 

Col. 6 X 
Col. 2 

1 0 13.6 1.13354 .69897 -.15552 0 

2 0 15.4 1.18752 .64499 -.19044 0 

3 7.5 23.4 1.36922 .46329 -.33442 -2.5082 

¿e 15.0 34.7 1.54033 .29218 -.53462 -;3.0193 

5 22.5 36.8 1.56585 .26666 -.57349 -12.9035 

6 30.0 43.5 1.63849 .19402 -.71220 -21.3660 

7 37.5 49.5 1.69461 .13790 -.86012 -32.2545 

8 45.0 54.8 1.73878 .09373 -1.02812 -46.2654 

9 45.0 54.4 1.73560 .09691 -1.01362 -45.6129 

10 60.0 60.3 1.78032 .05219 -1.28233 -76.9398 

11 75.0 66.5 1.82282 .00969 -2.01368 -151.0260 

*12 90.0 68.0 1.83251 0 _oo - oo 

13 105.0    66.6 1.82347 .00904 -2.04383 -214.6022 

14 120.0 67.5 1.82930 .00321 -2.49349 -299.2188 

B = 

1 

J ^  

=  -13.2359 

(2:xj)2 
562.5 

= 316,406. 

-.0194 

XZjXj: 

25  XXjXZ 

= -910.7165 

2 =  41,793.75 .= 7445.1938 
J   

ÍZA -ï^h^^'i 
xx/ - i (rxj)^ 

-.1787 
A = ±  [IZj -B^A. J = 

A 
oe = A ntilog B = .95 64 Q=  Antil og A =   _ .6627 

^See note on Sheet 3. 
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Sheet 8 

TABLE FOR COMPUTING VALUES OF GOMPERTZ FUNCTION 

Description of Data: 
ß = 

.9564 

.6627 
Computations for Example 3,  Figure 5. 
Parameters taken from sheet 7. 

7=1 
Log Cl = - 

.8325 

.0194 

(1) (2) (3) (4) (5) (6) 

Variable 
Log a  • Col. 1 Antilog 

Col. 2 
ß • Col. 3 r-coi. 4 Antilog 

Col. 5 

0 0 1.0000 .6627 1.1698 14.78 

7.5 -.1455 .7087 .4696 1.3629 23.06 

15.0 -.2910 .5022 .3328 1.4997 31.60 

22.5 -.4365 .3634 .2408 1.5917 39.06 

30.0 -.5820 .2575 .1706 1.6619 45.91 

37.5 -.7275 .1863 .1235 1.7090 50.22 

45.0 -.8730 .1320 .0875 1.7450 55.59 

60.0 -1.1640 .0677 .0449 1.7876 61.32 

75.0 -1.4550 .0347 .0230 1.8095 64.49 

90.0 -1.7460 .0178 .0118 1.8207 66.18 

105.0 -2.0370 .0091 .0060 1.8265 67.07 

120.0 -2.3280 .0047 .0031 1.8294 67.52 

150.0 -2.9100 .0012 .0008 1.8317 67.88 
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COMPUTATION SHEET 
for 

Estimating Gompertz Function 
(Method 2) 

Sheet 9 

Description of Data: 
Computations for Example 4, 
from Table 2. 

Figure 8.  Column 1 talcen 

(1) (2) (3) (4) 

Yg- 
variable 

Zj variable 
= Log Yj 

Zj + l 
variable 

Col. 2 X Col. 3 
n-1 
IZi = 47.60445 

44 1.64345 1.64345 2.70093 n-1 2 
DZ,. - 91.44561 44 1.64345 1.65321 2.71697 

45 1.65321 1.68124 2.77944 
48 1.68124 1.71600 2.88501 
52 1.71600 1.74036 2.98646 n-1 
55 1.74036 1.74036 3.02885 iLZ])^  = 2266.1836 
55 1.74036 1.76343 3.06900 j=l 
58 1.76343 1.78533 3.14830 
61 1.78533 1.81954 3.24848 n-1 
66 1.81954 1.83885 3.34586 LZ.  Zj+n = 92.36993 
69 1.83885 1.84510 3.39286 
70 1.84510 1.86923 3.44892 
74 1.86923 1.90309 3.55731 n-1 n-1 
80 1.90309 1.94939 3.70986 rZjZZj+i = 2289.66551 
89 1.94939 2.00000 3.89878 
100 2.00000 2.04532 4.09064 
111 2.04532 2.07188 4.23766 n-1 
118 2.07188 2.10380 4.35882 XZi+i = 48.09772 
127 2.10380 2.12385 4.46816 j=l 
133 2.12385 2.12710 4.51764 
134 2.12710 2.13033 4.53142 
135 2.13033 2.13354 4.54514 
136 2.13354 2.13672 4.55878 

137 2.13672 2.13988 4.57232 

138 2.13988 2.13672 4.57232 

B = 

n-1 
r Z,- Z j^x -iÀ)^j!i ^'^'' 

n-1 n-1 
EZ^ 

n-1 2 
rzj 

n-1 

Ù  = Antilog ( log B ) = 
M 

n-1 

.9813 

.0553 

A 
y= V(l-B) = 2.9572 
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Sheet 10 

TABLE FOR COMPUTING VALUES OF GOMPERTZ FUNCTION 

Description of Data: a =  .9813 
Computations for Example 4, 
Figure 7. Parameters from 
Sheet 9. 

ß 
y 

Log a 

= 1.3138 
= 2.9572 
= -.0082 

(1) (2) (3) (^) (5) (6) 

variable 
Log a • Col. 1 Antilog 

Col. 2 ß  • Col. 3 y- Col. 4 Antilog 
Col. 5 

0 0 1.0000 1.3138 1.6434 44.0 

2 -.0164 .9630 1.2652 1.2920 49.3 

5 -.0410 .9100 1.1956 1.7616 57.8 

8 -.0656 .8598 1.1296 1.8276 67.2 

10 -.0820 .8280 1.0878 1.8694 74.0 

12 -.U984 .7946 1.0439 1.9133 81.9 

15 -.1230 .7534 .9898 1.9674 92.8 

18 -.1476 .7119 .9353 2.0219 105.2 

20 -.1640 .6855 .9006 2.0566 113.9 

22 -.1804 .6601 .8672 2.0900 123.1 

25 -.2050 .6237 .8194 2.1378 137.3 

30 -.2460 .5676 .7457 2.2115 162.2 

35 -.2870 .5164 .6784 2.2788 190.0 

38 -.3116 .4880 .6411 2.3161 207.1 
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Sheet 11 

COMPUTATION SHEET 
for 

Estimating SpilLíiian Function 
(Method 2) 

r.^^^^- +•   ^ T^ ^    Computations for Exajnple 5. Figure 10, Columns 1 and 2 
Description of Data:  ^,^   ^^^^^   ^^     y 

taken from Table 2. 

(1) 

variable 

89 

100 

111 

118 

127 

133 

134 

135 

136 

137 

138 

(2) 

variable 

100 

111 

118 

127 

133 

134 

135 

136 

137 

138 

137 

n-1 

B = 

A = 

n-1 p 

n-1 
1   [ lY 

Tïï^ j=i 
j+i 

(3) 

Col. 1 X Col. 2 

8900 

11100 

13098 

14986 

16891 

17822 

18090 

18360 

18632 

18906 

18906 

n-1 

j   = 1358 

n-1    2 
TYj   ^   170,474 

n-1 
(r Yj)2      1,844,164 

J=l 

n-1 
L Yj Yj.^-L ^  175,691 

j=l 

n-1    n-1 
L Yj  X Yj+-L ^  1,909,348 

n-1 
1406 

.n-1      n-1 
XY,-    XY,+1 

(n-1)       .1=1 '  j=l 
.7504 

1 n-1    2 
Tir:ïT     (XYj) 

n-1 
-      B X Y i ]    _ 35.1783 

j=l 

a  =    Antiiog  (  l'2g_B )   = 
M 

.7504 V   = A/(l-B)   = 140.9387 



Sheet 12 

TABLE FOR COMPUTING VALUES OF SPILLMAN FUNCTION 

Description f ^^ +   ,      Computations for Example 
Figure 9. Parameters from 
Sheet 11. 

01 = 
5,      ß = 

y = 
Log Ct = 

.7504 
51.9387 

140.9387 
-.12471 

(1) (2) (3) (^) (5) 

X 
variable 

Log üi • Col. 1 Antilog Col. 2 ß '  Col. 3 y- Col. 4 

0 0 1.0000 51.9387 89.0 

1 -.12471 .7504 38.3408 102.6 

2 -.24942 .5631 29.2467 111.7 

3 -.37413 .4225 21.9441 118.9 

4 -.49884 .3171 16.4698 124.5 

5 -.62355 .2379 12.3562 128.6 

6 -.74826 .1785 9.2711 131.7 

7 -.87297 .1340 6.9598 133.9 

8 -.99768 .1005 5.2198 135.7 

9 -1.12239 .0754 3.9162 137.0 

10 -1.24710 .0566 2.9397 138.0 

11 -1.37181 .0425 2.2074 138.7 

12 -1.49652 .0319 1.6568 139.3 

22 -2.74362 .0018 .0935 140.8 
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